Fluoride Crystal Materials Corning[®] Calcium Fluoride (CaF₂) - Code 9575 Specialty Materials

CORNING

Corning Specialty Materials is a premier supplier of fluoride crystal materials. With exceptional purity and quality, our crystal materials transmit at multiple wavelengths and can be used in a variety of applications for complete end-to-end optical solutions.

Corning also offers design engineering, fabricating, polishing and coating capabilities. With the ability to do it all under one roof, let Corning be the supplier of choice for your most complex optical requirements.

- Calcium Fluoride is uniquely suited for demanding optical applications from deep ultraviolet through the infrared.
- Physically stable and chemically inert with superior hardness, Calcium Fluoride is the material of choice for microlithography and laser optics applications.
- Single crystal ingots are grown using Corning's proprietary process from highly purified materials, ensuring consistent supply.
- A full range of geometries and finishes, from ingots and blanks to complex multi-faceted, highly polished parts are available. Standard (111) orientation as well as specifically oriented parts and materials are offered.
- Multiple material grades are available to match customer needs. *IR, UV, DUV, KrF, ArF, and High-Fluence*
- Low absorption coatings are customized to meet customer specifications, including coatings designed for enhanced laser durability in both reflective and anti-reflective.

Physical and Chemical Properties

General Properties	
CAS#	7789-75-5
Molecular Weight	78.08 g/mol
Structure	Cubic, fluorite type, space group Fm3m, a_0 = 5.462 Angstroms, z = 4
Density	3.18 g/cm ³ at 25 °C
Melting Point	1360 °C
Boiling Point	2451 °C
Solubility	0.002 g/100g H ₂ O at 18 °C

Mechanical and Elastic Properties Young's Modulus 75.8 GPa

roung s would	73.8 GF a
Elastic Constants	
Elastic Compliance	Elastic Stiffness
(x10 ⁻² /GPa)	(x10 ² GPa)
$S_{11} = 0.6867$	$C_{11} = 1.6420$
S ₁₂ = 0.1451	$C_{12} = 0.4398$
$S_{44} = 2.9764$	$C_{44} = 0.3370$
Dielectric Constant	E ₀ = 6.81 at 27 °C
Poisson Ratio	0.26
Hardness	158.3 Knoop for both [100] and [110] directions

Thermal Properties

Heat Capacity					
т [К]			С _р [J/(g·K)]		
85.32			0.280		
104.51			0.577		
186.00			0.699		
216.40			0.757		
276.00			0.837		
296.50			0.853		
Thermal Conduct	tivitv				
T [°C]	,		[W/(m·K)]		
88			61.0		
200			16.5		
320			11.7		
Linear Thermal E	xpansion Coeffic	cient			
Linear Thermal E T [°C]	xpansion Coeffic T [K]	cient Coefficient [x10 ⁻⁶ /K]	T [°C]	т [К]	Coefficient [x10 ⁻⁶ /K]
Linear Thermal E T [°C] -180	xpansion Coeffic T [K] 93	cient Coefficient [x10 ⁻⁶ /K] 6.7	T [°C]	T [K] 293	Coefficient [x10 ⁻⁶ /K] 18.7
Linear Thermal E T [°C] -180 -160	xpansion Coeffic T [K] 93 113	cient Coefficient [x10 ⁻⁶ /K] 6.7 9.1	T [° C] 20 40	T [K] 293 313	Coefficient [x10⁻⁶/K] 18.7 19.1
Linear Thermal E T [°C] -180 -160 -140	xpansion Coeffic T [K] 93 113 133	cient Coefficient [x10 ⁻⁶ /K] 6.7 9.1 11.1	T [° C] 20 40 60	T [K] 293 313 333	Coefficient [x10⁻⁶/K] 18.7 19.1 19.4
Linear Thermal E T [°C] -180 -160 -140 -120	xpansion Coeffic T [K] 93 113 133 153	Coefficient [x10⁻⁶/K] 6.7 9.1 11.1 12.8	T [°C] 20 40 60 80	T [K] 293 313 333 353	Coefficient [x10⁻⁶/K] 18.7 19.1 19.4 19.7
Linear Thermal E T [°C] -180 -160 -140 -120 -120 -100	xpansion Coeffic T [K] 93 113 133 153 153 173	Coefficient [x10⁻⁶/K] 6.7 9.1 11.1 12.8 14.1	T [° C] 20 40 60 80 100	T [K] 293 313 333 353 353 373	Coefficient [x10⁻⁶/K] 18.7 19.1 19.4 19.7 20.0
Linear Thermal E T [°C] -180 -160 -140 -120 -100 -80	xpansion Coeffic T [K] 93 113 133 153 153 173 193	Coefficient [x10 ⁻⁶ /K] 6.7 9.1 11.1 12.8 14.1 15.2	T [°C] 20 40 60 80 100 120	T [K] 293 313 333 353 353 373 393	Coefficient [x10⁻⁶/K] 18.7 19.1 19.4 19.7 20.0 20.4
Linear Thermal E T [°C] -180 -160 -140 -120 -120 -100 -80 -60	xpansion Coeffic T [K] 93 113 133 153 153 173 193 213	Coefficient [x10 ⁻⁶ /K] 6.7 9.1 11.1 12.8 14.1 15.2 16.2	T [°C] 20 40 60 80 100 120 140	T [K] 293 313 333 353 373 393 413	Coefficient [x10⁻⁶/K] 18.7 19.1 19.4 19.7 20.0 20.4 20.8
Linear Thermal E T [°C] -180 -160 -140 -120 -120 -100 -80 -60 -40	xpansion Coeffic T [K] 93 113 133 153 153 173 193 213 233	Coefficient [x10 ⁻⁶ /K] 6.7 9.1 11.1 12.8 14.1 15.2 16.2 17.0	T [°C] 20 40 60 80 100 120 140 160	T [K] 293 313 333 353 353 373 393 413 433	Coefficient [x10⁻⁶/K] 18.7 19.1 19.4 19.7 20.0 20.4 20.8 21.3
Linear Thermal E T [°C] -180 -160 -140 -120 -120 -100 -80 -60 -40 -20	xpansion Coeffic T [K] 93 113 133 153 153 173 193 213 233 253	Coefficient [x10 ⁻⁶ /K] 6.7 9.1 11.1 12.8 14.1 15.2 16.2 17.0 17.7	T [°C] 20 40 60 80 100 120 140 160 180	T [K] 293 313 333 353 353 373 393 413 433 453	Coefficient [x10 ⁻⁶ /K] 18.7 19.1 19.4 19.7 20.0 20.4 20.8 21.3 21.7

Debye Temperature

513 ± 2 K

Optical Properties

Transmission Range	0.12 μm to beyond 7.5 μm, depending on thickness	
Energy Gap	10eV	
Restrahl Frequency	35 μm and 25 μm maxima	
Reciprocal Dispersive Power	94	
Photoelasticity	In the visible region the piezo coefficients are: 10^{-12} Pa $q_{11} = -0.038$ $q_{12} = 1.08$ $(q_{11}-q_{12}) = -1.46$ $q_{44} = 0.71$ At 10.6 µm $(q_{11}-q_{12}) = -0.513$	
Optic Modes	Transverse: 257/cm at 300 K and 267/cm at 80 K Longitudinal: 463/cm at 300 K and 472/cm at 80 K	

Available Grades and Additional Information

Corning[®] Calcium Fluoride material is classified in the following general grades:

 Laser Durability 	193 nm
 Super-Excimer 	193 nm
Excimer	193 nm
 Ultraviolet 	200 nm – 400 nm
 Visible-Infrared 	400 nm – 10.6 µm

recommended for ArF recommended for ArF recommended for KrF and ArF Corning's crystal experts work actively with prospective customers to determine the most appropriate and costeffective solution for each application. Depending on the application of interest, some or all of the following attributes may be considered in the selection process:

Feature	Capability
Internal transmittance	> 99.9% @ 193.3nm
Stress Birefringence	<1 nm/cm (avg.), [111], measured at 546 nm
Bubbles/Inclusions	ISO 10110 - 1/1 x 0.02
Scratch dig	To 10/5 available
Micro-roughness	To 2 Å available
Available raw material diameters	1.75", 1.9", 2.4", and 4.1" (typical) others upon request.
Orientation	(111) +/-2° typical, others upon request
Finish	Cleaved, saw cut, fine ground, polished, super-polished, enhanced super-polished
Coatings	Anti-reflective, highly reflective, partially reflective, low absorption,
	protective/enhanced durability, custom solutions upon request

Depending on customer requirements, Corning can provide solutions ranging from crystal blanks to complete turnkey optical packages. Corning can precisely manufacture a wide variety of laser optic components including: windows, prisms, mirrors, plano convex, plano concave, and hemispherical optics. With world-class coating engineering expertise, Corning can customize final optical performance to enhance transmission, reflectivity, and/or laser durability to customer specification in order to provide a comprehensive optical path solution.

For more information about fluoride crystals please contact us at:

Email: specialtymaterials@corning.com Web: www.corning.com/specialtymaterials

Sales Offices:

Corning Tropel Corporation 60 O'Connor Road Fairport, New York 14450, United States Phone: (585) 388-3500; Fax: (585) 377-1966

Corning GmbH - Corning International

Abraham-Lincoln Strasse 30 D-65189 Wiesbaden, Germany Phone: 49-611-7366-100; Fax: 49-611-7366-143

Corning Inc. - Corning International

Suite 18 P.O. Box 42 12, Tryon Road Lindfield, N.S.W. 2070, Australia Phone: 61-2-9416-0492

Corning International K.K.

Akasaka Intercity 6th floor 1-11-44 Akasaka, Minato-ku Tokyo, 107-0052, Japan Phone: 81-3-3586-5002; Fax: 81-3-3224-1405

Corning Development Inc. Singapore

1, Kim Seng Promenade Great World City #9-11/12 West Tower 237994, Singapore Phone: 65-6733-6511; Fax: 65-6735-2913

Corning International - Taiwan

Room # 1203, 12F, No. 205, Tun Hua North Road Taipei 105, Taiwan Phone: 886-2-2716-0338

Corning China (Shanghai) Regional Headquarters 31/F The Center 989 Chang Le Road Shanghai 200031, China Telephone: 86-21-5467-4666; Fax: 86-21-5407-5899

CORNING